
Semianaly

semiconductor technology (Suzhou)Co.,Ltd.

Specializing in non-contact semiconductor measurement testing and analysis solutions.

Staying true to our roots,

we are dedicated to advancing national brands and bolstering national confidence.

Company Profile

Established in 2021, Semianaly Semiconductor Technology (Suzhou) Co., Ltd. is a non-contact semiconductor testing and analysis equipment manufacturer with world-leading technology. The company integrates research, design, manufacturing, and sales, focusing on overcoming foreign monopoly technologies, substituting imported products, and promoting the localization of semiconductor material testing equipment.

Main Products: Non-contact non-destructive block resistance tester, wafer resistance tester, sheet resistance tester, silicon wafer resistivity tester, eddy current method high and low resistivity analyzer, ingot resistivity analyzer, eddy current resistivity probe, PN probe tester, mobility (Hall) tester, minority carrier lifetime tester, wafer and silicon wafer thickness tester, surface photovoltage instrument JPV\SPV, Mercury CV, ECV. Providing testing and solutions for silicon carbide, silicon wafer, gallium nitride, substrates, and epitaxial manufacturers.

With advanced technology and rich product design experience, we have applied for over 20 intellectual property rights. We have developed into one of the few semiconductor equipment providers in mainland China with certain international competitiveness. Our products have gained recognition from numerous domestic and international mainstream semiconductor manufacturers and have earned a good market reputation.

Product Catalog

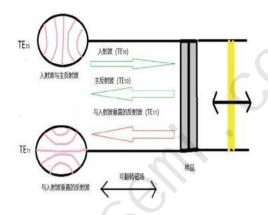
Mobility (Hall) Tester	03
Resistance (Resistivity) Tester	05
Resistivity PN Temperature Testing Module	09
Diffusion Thin Film Sheet Resistance Analysis Module	11
(JPV Structure Photovoltage Method)	
Thickness Tester	13
Manual Resistivity PN Thickness Tester	13
Handheld Ingot Testing System / Minority Life Tester	14
EFEM Fully Automatic Resistivity / Mobility Tester	15
Product Models & Technical Features	16
Cooperative Advantages & Intellectual Property Rights	17

Mobility (Hall) Tester

Product Description:

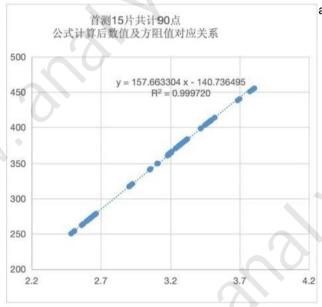
The equipment primarily utilizes microwave testing principles to non-contactly measure the sheet resistance, mobility, and carrier concentration of radio frequency (RF) HEMT structured semiconductor materials. It can conduct single-point tests and also perform area scanning tests, offering advantages such as speed, non-destructiveness, and accuracy. It is used for material research, process monitoring, and quality control.

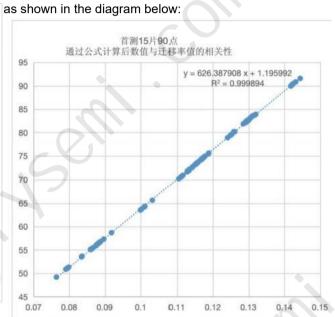
Features:


- Suitable for measuring mobility in the range of 100cm²/V·s to 3000cm²/V·s for RF HEMT epitaxial wafers.
- Non-contact, non-damaging testing, with advantages of fast testing speed, good repeatability, and high testing sensitivity, enabling direct testing of product wafers.

Technical Specifications:

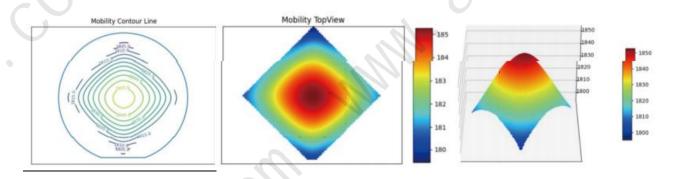
Specifications	Descriptions
Carrier Mobility Test Range	100~20000cm²/V ·s
Sheet Resistance Test Range	100-30002/so
Carrier Concentration	1E+11-1E+14
Carrier Mobility Dynamic Repeatability	≤2%
Carrier Mobility Static Repeatability	≤1%
Carrier Mobility Test Accuracy	士10%
Sheet Resistance Dynamic Repeatability	≤2%
Sheet Resistance Static Repeatability	≤1%
Sheet Resistance Test Accuracy	±10%
Allowed Sample Thickness	200-1500μm
Sample Size	2"-8"
Magnetic Induction Strength	1.0T (Removable and Reversible)
Software Functions	Automatically generates reports containing Mapping, 2D Contour, and 3D Maps
Automatic Transfer Testing Capability	Optional


Principle of Microwave-Hall Method for Testing Semiconductor Sheet Resistance and Carrier Mobility



Principle:

Utilizing a microwave source to transmit microwaves through a waveguide to the test sample's surface, different samples with varying mobility under the influence of a magnetic field exhibit different microwave reflection effects. By detecting the reflected microwave power and converting it into the corresponding conductivity tensor, a model is established to calculate the carrier concentration and mobility of the HEMT structure.


Microwave-Hall method testing of semiconductor block resistance core algorithm correlation

	—
Report Time	2023/08/1711:43
Analysis Time	2023/08/1711:30
Operator ID	admin11l
Substrate Settings	test
Substrate Thickness	500um
Size Specifications	100mm

Number of Test Samples	6
Maximum Mobility	1852.68
Minimum Mobility	1794.41
Average Mobility	1813.35
Standard Deviation	21.3136
Relative Standard Deviation	1.1754%

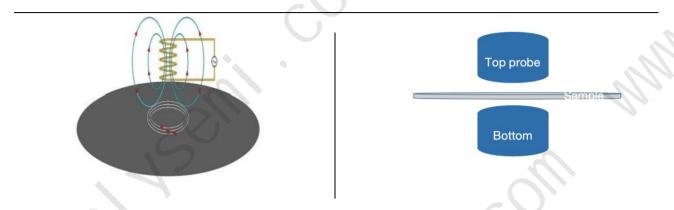
Resistance (Resistivity) Tester (Wafer and Ingot)

Product Description:

The equipment primarily utilizes eddy current testing principles to non-contactly test the sheet resistance (resistivity) of semiconductor materials, graphene, transparent conductive films, carbon nanotubes, metals, and other materials. It enables single-point and area scanning tests, used for material research and process monitoring for quality control purposes.

Features:

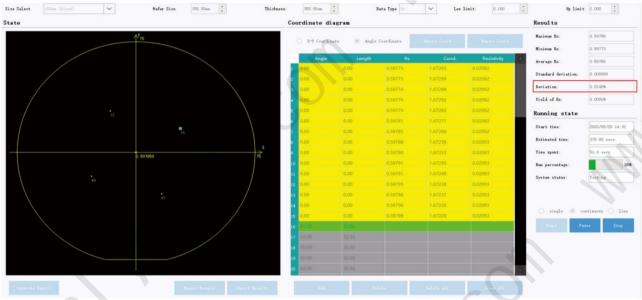
This instrument is non-contact and non-destructive, with advantages of fast testing speed, good repeatability, high testing sensitivity, allowing direct testing of product wafers.


Technical Specifications:

Parameters	Probe	Resistance Range	Resistivity Range	Testing Method				
	Low-resistance probe	0.005-1Ω/□	0.25-500mΩ*cm	Eddy current				
Range	Mid-resistance probe	0.05-10Ω/□	2.5-500mΩ*cm	method, non-				
	High-resistance probe	10-3000Ω/□	0.5-150mΩ*cm	contact				
	Ingot probe	0.01-2Q*cm						
Repeatability	<0.2%(≤50% range)		<0.5%(>50% range)					
Accuracy	<2%(≤50% range)		<3%(>50% range)					
Probe Information	Type of Probe: Dual-probe (upper and lower probes with a 2-3mm gap), Probe Diameter: Out diameter 20mm, Inner diameter 14mm (effective testing part), Probe Gap: 30mm							
Coordinate Settings	Arbitrary Coordinate Settings							
Store data	Internal Database Storage (Exportable Table Files), PDF Test Report containing test information (time, operator), wafer information (number, size, thickness), data information (number of test points, max/min/average values, relative standard deviation, etc.), contour maps, surface maps, etc. CSV Table Data Storable to Remote Server Modifiable report information as per customer requirements							
WAFER Information	Size: 2"-8" (inches) Thickness:100-1500mm							
System Requirements	Power Supply: AC220V,50/60Hz Relative Humidity:20%-80%RH	Power: 600W Size: 975*465*	Environment: Temp 425(mm) Lifespan: >10					

Eddy Current Testing Principle

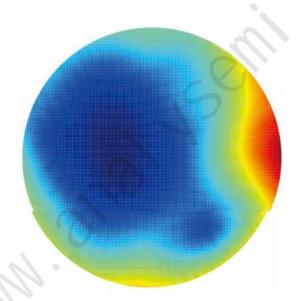
When a detection coil carrying an alternating current approaches the tested conductor, due to the coil's alternating magnetic field, eddy currents are induced in the tested conductor, creating a magnetic field opposite to the original magnetic field, partially offsetting the original magnetic field, resulting in changes in the resistance and inductance of the detection coil.


Resistivity = Sheet Resistance * Wafer Thickness Sheet Resistance and V have a relationship

Resistivity is used to represent the electrical resistance characteristics of a material, it is a physical quantity of the material's electrical properties.

Material	Resistivity	Sheet Resistance
Silicon wafer	Y	Υ
Sic wafer /Ingot	Y	Υ
GaO wafer /Ingot	Y	Υ
GaN wafer 2DEGI	Y	Y
GaAs 2EDG		Y
GZO/LTPS/ITO		Υ
flat panel)		Y
TCO(Touch panel)	. ()-	Y
Graphene		Y
Metal film		

Stability Performance

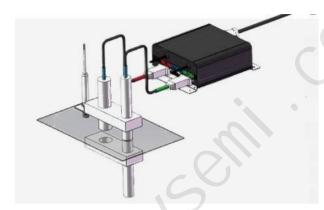


Relative standard deviation = 0.0149% @ 15 points measured at the center. Data derived from the software testing process.

Sheet Resistance Mapping Report (55 points)

neet resistance mapping report (so points)										
Report Time	2021/03/2913:51	Number of Samples Tested	55							
Analysis Time	2021/03/2913:47	Maximum Sheet Resistance	0.0232							
Operator ID	0	Minimum Sheet Resistance	0.02277							
Batch ID	0	Average Sheet Resistance	0.02293							
Sample ID	A-1-55	Standard Deviation	0.000111							
Size Specification	100mm	Relative Standard Deviation	0.4861%							

Point-by-Point Dynamic Reproducibility Data (38 coordinate points) Consistency Data (measured 5 times on the sample surface)


	1st	2nd	3rd	4th	5th	Reproducibility	/ Max
1	0.12459	0.12466	0.12467	0.12471	0.12472	0 0413%	0 0703%
2	0.12347	0.12351	0.12356	0.12358	0.12362	0.0477%	
3	0.12315	0.12321	0.12323	0.12326	0.12329	0.0431%	
4	0.12389	0.12398	0.124	0.12402	0.12405	0.0489%	
5	0.12421	0.12424	0.12428	0.12438	0.12441	0.0703%	
6	0.12396	0.12403	0.12406	0.12408	0.12412	0.0484%	
7	0.12387	0.12389	0.12398	0.124	0.12403	0.0566%	
8	0.12482	0.12486	0.1249	0.12493	0.12496	0.0444%	
9	0.12431	0.12434	0.1244	0.12447	0.12451	0.0679%	
10	0.12429	0.12435	0.12438	0.12442	0.12445	0.0500%	
11	0.12372	0.12378	0.1238	0.12383	0.12386	0.0429%	
12	0.12381	0.12389	0.12392	0.12393	0.12396	0.0462%	
13	0.1237	0.12374	0.1238	0.12381	0.12385	0.0481%	
14	0.12386	0.12394	0.12396	0.12399	0.12403	0.0512%	
15	0.12394	0.124	0.12404	0.12407	0.12409	0.0482%	
16	0.12496	0.125	0.12504	0.12507	0.12509	0.0421%	
17	0.1245	0.12454	0.12452	0.12464	0.12465	0.0562%	
18	0.12414	0.12418	0.12422	0.12425	0.12427	0.0424%	
19	0.12392	0.12396	0.124	0.12404	0.12406	0.0462%	
20	0.12487	0.12491	0.12496	0.12501	0.12501	0.0495%	
21	0.12355	0.1236	0.12363	0.12367	0.12372	0.0526%	
22	0.12402	0.12409	0.12412	0.12415	0.12417	0.0473%	
23	0.12442	0.12444	0.12453	0.12456	0.12458	0.0578%	
24	0.12419	0.12423	0.12428	0.12431	0.12434	0.0486%	
25	0.12388	0.12395	0.12396	0.12398	0.12403	0.0438%	
26	0.12501	0.12505	0.12509	0.12512	0.12516	0.0468%	
27	0.1244	0.12444	0.12453	0.12453	0.12458	0.0592%	
28	0.12441	0.12445	0.12452	0.12453	0.12457	0.0519%	
29	0.12385	0.12389	0.12393	0.1239f	0.124	0.0473%	
30	0.12379	0.12383	0.12385	0.12387	0.12392	0.0389%	
31	0.12367	0.1237	0.12372	0.12374	0.12381	0.0425%	
32	0.12393	0.12397	0.12402	0.12403	0.12409	0.0492%	
33	0.12394	0.12396	0.124	0.12405	0.12409	0.0502%	
34	0.12506	0.12509	0.12514	0.12519	0.12521	0.0510%	
35	0.12449	0.12452	0.12459	0.12465	0.12466	0.0610%	V
36	0.12423	0.12423	0.12431	0.12434	0.12436	0.0491%	
37	0.12382	0.12386	0.12386	0.12392	0.12395	0.0421%	
38	0.12494	0.12497	0.12502	0.12508	0.12508	0.0507%	

Stability Testing with Different Resistance Values (Statistical Analysis of 1000 data points)

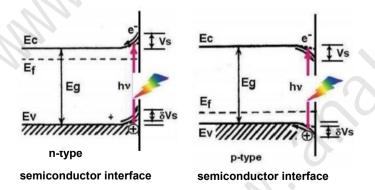
	Real Value	Static	Dynamic
	0.1013	0.05%	0. 05%
	0.1596	0.04%	0.04%
	0.2884	0.05%	0.06%
	0.5657	0.07%	0.05%
	0.9746	0.07%	0.08%
Stability	1.5941	0.11%	0.09%
Stability	3.1808	0.16%	0.27%
	16.662	0489	0.96%
	56.4	0.03%	0.05%
	180.6	0.10%	0.10%
	264.4	0.10%	0.16%
	573.7	0.28%	0.36%
	750.9	0 34%	0 43%

Resistance PN Temperature Testing Module

Product Description:

This product integrates sheet resistance (resistivity), PN type, and temperature three probes for measurement. It can be widely used in photovoltaic and semiconductor measurement fields such as silicon wafer sorting machines and production process analysis.

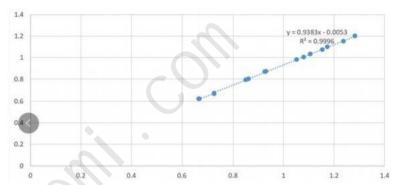
Features:


- Integration of resistivity, PN, and temperature
- Option to integrate thickness probes
- Mainly used in the photovoltaic field

Technical Specifications:

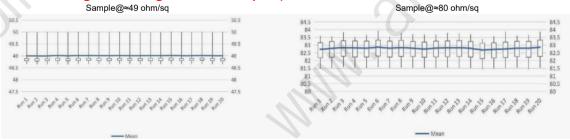
recinical opec	incations.									
Parameters	Sheet Resistan	Sheet Resistance (Thickness approximately 100µm)								
Probe Range	6-2000Ω/□(0.1-30Ω*cm)									
	Dynamic Reproducibility	Static Reproducibility	Display Error							
	006-080Ω/□(0.1-0.8Ω·cm)<0.15%	<0.02%	≤±3%							
Probe Performance	080-160Q/□(0.8-1.6Ω·cm)<0.3%	<0.039%	≤±3%							
	160-320Ω/□(1.6-3.2Ω·cm)<0.4%	<0.05%	≤±3%							
	320-2000Ω/□(3.2-20Ω·cm)<0.5%	<0.1%	≤±3%							
Dimensions	Upper Probe: φ20*145mm Lower Probe: φ2	0*100mm Control Box: 173*130	*55mm							
	Sampling Rate: ≤1ms, Data Acquisition >300	points								
	Data Interface: RS232 RS485 CAN TCP/IP									
Signal Acquisition	Transmission Protocol: Modbus Rtu/Modbus Tcp, user-defined SOCKET protocol, etc.									
	Automatic Temperature Compensation Syste	m								
	Raw signals can be accessed openly									

PN Testing Principle (SPV Method)


Monochromatic light with energy greater than the semiconductor material bandgap width is irradiated onto the surface, generating electron-hole pairs inside the semiconductor material. Driven by concentration gradients, electrons and holes near the surface space charge region of the semiconductor material are separated by self-built electric fields, creating photo-generated voltage, known as surface photovoltage.

Changes in the surface barrier height of n-type and p-type semiconductor materials under light induction

Correlation and Reproducibility Comparison with Imported *** Instrument (from customer testing)



Correlation Coefficient R2=0.9996, indicating excellent linearity

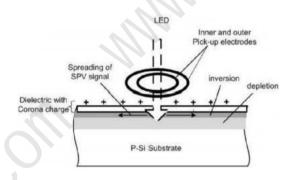
			Sample 1		Sample 2	
		Imported ****	7	Semia	naly	Imported **** Semianaly
No	Ave	Max Min	Ave	Max	Min	Ave Max Min Ave Max Min
	0.376	0.385 0.312	0.375	0.383	0.318	0.64 0.648 0.542 0.636 0.643 0.547
2	0.377	0.386 0.311	0.375	0.383	0.317	0.64 0.649 0.541 0.636 0.643 0.546
3	0.376	0.386 0.311	0.375	0.384	0.318	0.641 0.647 0.541 0.634 0.642 0.546
4	0.378	0.386 0.314	0.376	0.384	0.319	0.642 0.642 0.542
5	0.377	0.385 0.314	0.375	0.383	0.316	0.639 0.647 0.545 0.635 0.644 0.545
6	0.376	0.382 0.315	0.375	0.383	0.318	0.64 0.649 0.542 0.636 0.645 0.545
7	0.378	0.384 0.311	0.375	0.383	0.317	0.642 0.648 0.543 0.636 0.644 0.545
8	0.378	0.384 0.311	0.375	0.384	0.316	0.641 0.648 0.541 0.635 0.644 0.544
9	0.377	0.382 0.313	0.375	0.384	0.318	0.64 0.647 0.542 0.635 0.643 0.546
10	0.376	0.383 0.313	0376	0.384	0.318	0.641 0.648 0.545 0.635 0.645 0.544
Rsd	0.232%0.	408%0.483%	0.112%	0.137%	0.306%	0.151%0.309%0.278% 0.106% 0.186% 0.259%
%			0.00%	0.26%	1.60%	0.94% -0.46% -0.18%

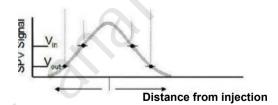
	Sample 3										Samp	ole 4	
Imported ****					Semianaly			Imported ****			Semianaly		
No.	Ave	Max	Min		Ave	Max	Min	Ave	Max	Min	Ave	Max	Min
	1.251	1.285	0.972		1.26	1.271	0.965	2.005	2.011	1.689	1.992	2.002	1.666
2	1.25	1.278	0.971		1.257	1.272	0.968	2.006	2.011	1.687	1.992	2.001	1.654
3	1.251	1.277	0.969		1.256	1.271	0.967	2.001	2.008	1.698	1.993	2.003	1653
4	1.248	1.287	0.966		1.258	1.268	0.968	2.002	2.015	1.688	1.991	2.005	1.655
5	1.247	1.283	0.964		1.258	1.274	0.962	2.006	2.018	1.687	1.992	2.002	1.665
6	1.252	1.281	0.963		1.258	1.274	0.962	2.004	2.019	1.685	1.997	2.001	1.653
7	1.250	1.282	0.962		1.259	1.271	0.965	2.008	3 2.021	1.697	1.992	2.009	1.653
8	1.252	1.282	0.964		1.257	1.272	0.960	2.008	2.035	1.683	1.998	2.01	1.658
9	1.252	1.284	0.968		1.256	1.274	0.966	2.009	2.021	1.682	1.996	2.01	1.655
10	1.253	1.277	0.97		1.255	1.271	0.965	2.004	2.022	1.685	1.992	2.008	1.659
Rsd	0.152%0.	266%0.3	370%		0.120%	0.147%	0.280%	0.131%	0. 381%0.	320%	0.126%	0.189%	0.295%
%					0.16%	-0.47%	-0.5290				-0.60%	-0.699%	-1.546


Photovoltaic Probe Stability (This product has been successfully launched in the photovoltaic field, stable testing exceeding 2 billion samples)

Boxplot of 20 test repetitions is very stable

Diffusion Thin Film Sheet Resistance Analysis Module (JPV Structure Photovoltage Method)

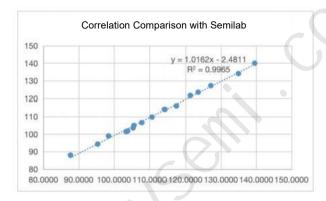


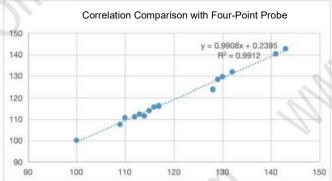

Product Description:

Primarily uses structure photovoltage technology for non-contact testing of samples with P/N or N/P structures for sheet resistance (emitter thin layer sheet resistance). This instrument is non-contact and non-destructive in testing, with advantages of high testing speed, good repeatability, and ability to directly test product slices.

Technical Specifications:

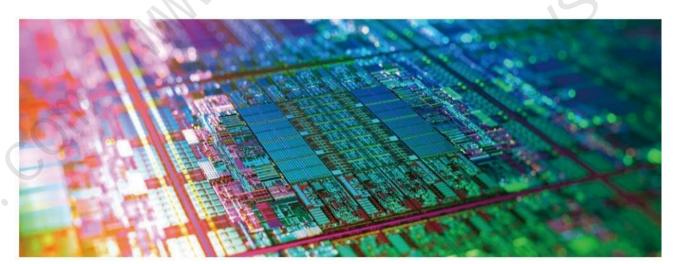
Probe Range	10-500Q/□					
	Dynamic Reproducibility	Static Reproducibility	Display Error			
	Testing Conditions: Sampling rate 50SPS (20ms), 20 points per cycle					
Probe Performance	010-050Q/□<2%	<0.5%	≤±3%			
	050-200Q/□<1% <0.2%		≤±3%			
	200-5002/□<0.6%	<0.15%	≤±3%			
Dimensions	Probe: 60mm*30mm*100mm (LW*H) Control Box: 173*130*55mm					
	Sampling Rate: up to 500SPS					
Signal Acquisition	Data Interface: RS232 RS485 CAN TO	♦ ,				
	Transmission Protocol: Modbus Rtu/Modbus Tcp, user-defined SOCKET protocol, etc.					





JPV Test Data

Experimental Data - Correlation



Experimental Data - Reproducibility and Accuracy

Sample 1		Sample 2		Sample 3		Sample 4						
	Four-point probe	SemiLab	Semianaly	Four-point probe	SemiLab	Semianaly	Four-point probe	SemiLab	Semianaly	Four-point probe	SemiLab	Semianaly
1	98.5	99.51	98.11	106.1	105.77	105.65	131.2	131.82	131.84	146.6	148.52	147.32
2	98.6	99.84	98.1	105.4	105.96	105.63	130.1	131.55	131.99	148.2	148.81	147.23
3	98.9	99.68	97.99	106.8	105.98	105.78	132.5	131.57	131.94	148	148.85	147.18
4	99	98.78	97.98	106.7	106.54	105.78	132.4	131.86	131.97	146.9	148.78	147.14
5	98.6	98.75	97.99	105.8	105.21	105.84	131.8	131.85	131.78	145.5	148.86	147.39
6	98.3	98.56	97.92	106.8	105.11	105.79	132.8	131.89	131.86	146.5	148.26	147.32
7	98	98.57	97.92	105.7	105.78	105.81	131.7	13154	131.7	148.5	1481C	147.26
8	98.2	98.79	98.06	105.3	105.95	105.76	131.1	132.66	131.81	148.6	148.21	147.15
9	97.6	98.69	97.82	105.5	105.76	105.76	131.4	132.05	131.76	147.4	148.51	147.28
10	98.6	99.13	97.92	106.2	106.14	105.82	130.8	132.29	131.73	148.1	148.15	147.09
Ave	98.43	99.03	97.98	106.03	105.82	105.76	131.58	131.91	131.84	147.43	148.51	147.236
Rsd	0.43%	0.48%	0.09%	0.55%	0.39%	0.07%	0.63%	0.270%	0.080%	0.69%	0.20%	0.060%
%		0.61%	0.46%		-0.20%	-0.25%		0.25%	0.20%		0.82%	-0.15%

Explanation:

- Four-point probe has poor reproducibility, with probe heads prone to issues causing significant testing deviations.
 Reproducibility deviation between Semilab and Semianaly is minimal.
- 3. Accuracy deviation remains within a certain range for both.

Thickness Tester

Manual Resistance PN Thickness Tester

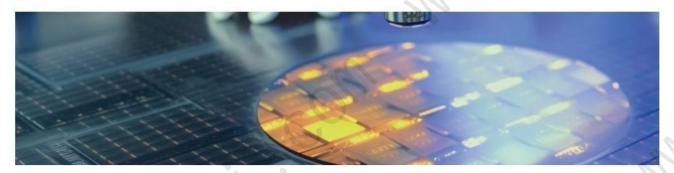
Product Description:

Primarily uses capacitance detection technology for high-precision non-contact detection. Non-contact and non-destructive testing, offering advantages of high testing speed, good repeatability, and high testing sensitivity, suitable for directly testing product slices.

Components Thickness Probe	pe	Method: Non-contact capacitance detection technology
	Range: 50µm-1000µm	
	Measurement Error: ≤±3µm	
	ickn	Repeatability: ≤0.2%
	Τ	Single-point Measurement Time: <1 second

Product Description:

Desktop-type manual resistance PN thickness measurement equipment. It utilizes eddy current, surface photovoltage, and capacitance methods to test resistivity, PN, and thickness, primarily for semiconductor and other material measurements. Equipped with various testing platforms according to different needs for customer selection.


Applications:

Semiconductor materials, solar cell materials (silicon, polycrystalline silicon, silicon carbide, etc.), new materials, functional materials, conductive films (metals, ions, etc.), diffusion layers, silicon-related epitaxial materials.

Weight	35kg
Dimensions	460mm (L)×505mm (W)×205mm (H)
Interfaces	Ethernet Port×1 DB9×1 Power Cord Interface×1 Foot Switch×1 Air Source Port×1 Switch Button×1
Ciliana Mafan	Square Sample: 125mm×125mm, 156mm×156mm Circular Sample: 4", 5", 6", 8", 12" Silicon Wafer Thickness Range: 50μm~1000μm
Silicon Wafer Requirements	Silicon Wafer Resistivity Range: 0.1Q*cm~20Q*cm (resistivity range can be customized) (Thickness approximately 180μm)

	Data Indicators					
Single-point and	Error: ≤±3.00μm					
multi-point thickness	Repeatability: ≤±0.5%					
Resistivity	Error: ≤±3%					
	Repeatability: ≤0.5%					
Environmental Requirements						
Temperature	22°C~25°C					
Humidity	35%~60%					

HANDHELD INGOT TESTING SYSTEM

- Resistivity Range <100Q*cm
- Silicon ingot integration with PN and temperature
- Manual switch trigger, integrating MAPPING diagram and temperature compensation function
- Long lifespan (>10 years), no consumables required

- \bullet Adapts to the testing needs of low resistivity samples, with small sample resistivity down to 0.12*cm
- Fully automatic operation and data processing
- For solar-grade silicon wafers, pre-processing before testing is generally not required
- Able to test single crystal or polycrystalline silicon rods, slices, or ingots
- Testing possible at any position on the sample
- Quality control available for multi-step samples:

Incoming and outgoing inspection of silicon rods and slices;

Silicon wafers after diffusion;

Silicon wafers after surface coating, and finished batteries.

Technical Specifications:

Measurement Principle	QSSPC (Quasi-Steady-State Photoconductance)			
Minority Life Measurement Range	0.1μS~1000μS			
Measurement Modes	QSSPC, transient, lifetime normalization analysis			
Compatible Sheet Resistance Range	2~1000Q/□			
Sample Specifications	40mm~300mm			
Pulse Width	80 nS			
Environmental Temperature	20°℃~30℃			
Peak Power	60W			
Power Requirements	AC100~240V,50/60Hz			

Features:

① Non-contact, non-destructive measurement of minority life suitable for single crystal or polycrystalline silicon samples

EFEM FULLY AUTOMATIC RESISTIVITY MOBILITY TESTER

Product Description:

The EFEM (Front-End Module of Semiconductor Equipment) is a part of semiconductor production equipment, primarily composed of a wafer loading module, FFU air filter, wafer transport robot, wafer alignment device, wafer code reading device, and automatic control module. The core components include the wafer loading system (Loadport), wafer transport robot (Robot), wafer alignment device (Aligner), and wafer code reading device (OCR).

PRODUCT MODEL SUMMARY

Product Name and Model	Model	Application Field Comparable Im		e Imported Equipment
Non-contact Eddy Current Sheet Resistance Tester	ER1110	Substrate and epitaxial testing of semiconductor materials (Si, SiC, GaN, ingots)	Semilab Napson	LEI-1510 Series NC-80MAF
Non-contact Eddy Current Resistivity Test Probe	ER-P1000	Photovoltaic cell sorting, Si wafer sorting	Napson	EC-80P
Non-contact SPV PN Test Probe	ER-P0100	Photovoltaic cell sorting, Si wafer sorting	Napson	PN-50E
Non-contact Hall Effect Mobility Tester	HM-2000	RF GaN HEMT epitaxial slice testing	Semilab	LEI-1610E100AM Series
Non-contact JPV Surface Sheet Resistance Test Probe	SP-P3000	Surface sheet resistance after P or N diffusion of battery cells	Semilab	CMS-1AP

TECHNICAL FEATURES

All products are compared to imported products, with performance indicators not inferior to international brands. All products are designed based on original principles, and there is no infringement or counterfeiting behavior.

Hardware System

- Independently developed detection probes
- Independently developed analysis system
- Independently developed structural system

Software System

- Independently developed applications
- Independently developed Mapping
- Compatible with domestic operating systems

INTELLECTUAL PROPERTY

- Applied for 5 invention patents
- Applied for 15 utility model patents, granted 8
- Applied for 5 design patents, granted 6
- Applied for 5 software copyrights, granted 3

COLLABORATION AND ADVANTAGES

Good repeatability vs. current market reference
Good stability vs. current market reference
Good accuracy vs. current market reference
Some products have obtained CE certification or relevant certifications

Independently developed hardware, software, and structures based on original principles without intellectual property infringement

Domestic high-quality service and response speed Selective strategic partnerships

Partners

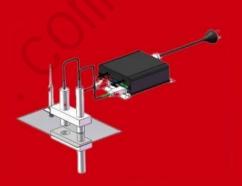
Semiconductor wafer

Photovoltaic cell manufacturers

Photovoltaic silicon wafer sorting machine service providers

Universities, research institutions, enterprise testing organizations

RF substrate and epitaxial production manufacturers


Semiconductor material research institutions

Ingot and chip manufacturers

Analysemi semiconductor technology (Suzhou)Co.,Ltd.

Address: Building 1, 6th Floor, Jintai Science and Technology Innovation Park, No. 2 Lita Road, Taiping Street, Xiangcheng

District, Suzhou, Jiangsu

Website: www.analysemi.com Contact Number: 137 3917 0031

Version 2024